

First Day 40th Iranian Mathematics Competition 24 August 2016

- 1. Let R be a ring and $e, f \in R$. Suppose that e, f, and e + f are idempotents, prove that ef is an idempotent too. (An element $x \in R$ is called idempotent if $x^2 = x$).
- 2. Show that the function $d : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ defined by $d(m, n) = \log \frac{\sqrt{mn}}{(m, n)}$ is a metric on \mathbb{N} . ((m, n) is the greatest common divisor of m and n).
- 3. Let u_n be the unique positive root of the equation $x^n + x^{n-1} + \cdots + x 1 = 0$. Prove that $\{u_n\}$ is convergent and find its limit.
- 4. Let R be a finite ring with identity and U(R) be the set of all invertible elements of R. Show that R has not any non-zero nilpotent element, provided that (|U(R)|, |R|) = 1.
 (We say x ∈ R is nilpotent if xⁿ = 0 for some n ∈ N).
- 5. Let P_1, \ldots, P_n be some points inside a circle of unit radii such that for each point P on the circle, the product $|\overline{PP_1}| \cdot |\overline{PP_2}| \cdot \ldots \cdot |\overline{PP_n}| \leq 1$. Show that all of the points P_1, \ldots, P_n coincide with the center of the circle.
- 6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a continuous function such that its restriction to any line in \mathbb{R}^2 is monotone, i.e., the mapping $g : \mathbb{R} \to \mathbb{R}$ defined by g(t) = f(ta + b), is monotone for all $a, b \in \mathbb{R}^2$. Prove that there exist a function $h : \mathbb{R} \to \mathbb{R}$ and a vector $v \in \mathbb{R}^2$ such that f(x) = h(x.v).

(Here, x.v denotes the inner product of the vectors x and v).