1. Let R be a ring and $e, f \in R$. Suppose that e, f, and $e + f$ are idempotents, prove that ef is an idempotent too. (An element $x \in R$ is called idempotent if $x^2 = x$).

2. Show that the function $d : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}$ defined by $d(m, n) = \log(\frac{\sqrt{\text{gcd}(m, n)}}{m\cdot n})$ is a metric on \mathbb{N}. ($\text{gcd}(m, n)$ is the greatest common divisor of m and n).

3. Let u_n be the unique positive root of the equation $x^n + x^{n-1} + \cdots + x - 1 = 0$. Prove that the sequence $\{u_n\}$ is convergent and find its limit.

4. Let R be a finite ring with identity and $U(R)$ be the set of all invertible elements of R. Show that R has not any non-zero nilpotent element, provided that $|U(R)| = |R| = 1$.

(We say $x \in R$ is nilpotent if $x^n = 0$ for some $n \in \mathbb{N}$).

5. Let P_1, \ldots, P_n be some points inside a circle of unit radii such that for each point P on the circle, the product $|PP_1| \cdot |PP_2| \cdots |PP_n| \leq 1$. Show that all of the points P_1, \ldots, P_n coincide with the center of the circle.

6. Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a continuous function such that its restriction to any line in \mathbb{R}^2 is monotone, i.e., the mapping $g : \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(t) = f(ta + b)$, is monotone for all $a, b \in \mathbb{R}^2$. Prove that there exist a function $h : \mathbb{R} \rightarrow \mathbb{R}$ and a vector $v \in \mathbb{R}^2$ such that $f(x) = h(x \cdot v)$.

(Here, $x \cdot v$ denotes the inner product of the vectors x and v).